60.60 Standard published Jun 12, 2019
CEN
CEN/TC 430 Nuclear energy, nuclear technologies, and radiological protection
European Norm
13.280 Radiation protection
Published
ISO 16639:2017 provides guidelines and performance criteria for sampling airborne radioactive substances in the workplace. Emphasis is on health protection of workers in the indoor environment.
ISO 16639:2017 provides best practices and performance-based criteria for the use of air sampling devices and systems, including retrospective samplers and continuous air monitors. Specifically, this document covers air sampling program objectives, design of air sampling and monitoring programs to meet program objectives, methods for air sampling and monitoring in the workplace, and quality assurance to ensure system performance toward protecting workers against unnecessary inhalation exposures.
The primary purpose of the surveillance of airborne activity concentrations in the workplace is to evaluate and mitigate inhalation hazards to workers in facilities where these can become airborne. A comprehensive surveillance program can be used to
- determine the effectiveness of administrative and engineering controls for confinement,
- measure activity concentrations of radioactive substances,
- alert workers to high activity concentrations in the air,
- aid in estimating worker intakes when bioassay methods are unavailable,
- determine signage or posting requirements for radiation protection, and
- determine appropriate protective equipment and measures.
Air sampling techniques consist of two general approaches. The first approach is retrospective sampling, in which the air is sampled, the collection medium is removed and taken to a radiation detector system and analysed for radioactive substance, and the concentration results made available at a later time. In this context, the measured air concentrations are evaluated retrospectively. The second approach is continuous real-time air monitoring so that workers can be warned that a significant release of airborne radioactivity may have just occurred. In implementing an effective air sampling program, it is important to achieve a balance between the two general approaches. The specific balance depends on hazard level of the work and the characteristics of each facility.
A special component of the second approach which can apply, if properly implemented, is the preparation of continuous air monitoring instrumentation and protocols. This enables radiation protection monitoring of personnel that have been trained and fitted with personal protective equipment (PPE) that permit pre-planned, defined, extended stay time in elevated concentrations of airborne radioactive substances. Such approaches can occur either as part of a planned re-entry of a contaminated area following an accidental loss of containment for accident assessment and recovery, or part of a project which involves systematic or routine access to radioactive substances (e.g. preparing process material containing easily aerosolized components), or handling objects such as poorly characterized waste materials that may contain radioactive contaminants that could be aerosolized when handled during repackaging. In this special case, the role of continuous air monitoring is to provide an alert to health physics personnel that the air concentrations of concern have exceeded a threshold such that the planned level of protection afforded by PPE has been or could be exceeded. This level would typically be many 10's or 100's of times higher than the derived air concentration (DAC) established for unprotected workers. The mo
PUBLISHED
EN ISO 16639:2019
60.60
Standard published
Jun 12, 2019